Powder diffraction: Least-squares and beyond

نویسندگان

چکیده

منابع مشابه

Powder Diffraction: Least-Squares and Beyond

This paper addresses some of the underlying statistical assumptions and issues in the collection and refinement of powder diffraction data. While standard data collection and Rietveld analysis have been extremely successful in providing structural information on a vast range of materials, there is often uncertainty about the true accuracy of the derived structural parameters. In this paper, we ...

متن کامل

Unifying Least Squares, Total Least Squares and Data Least Squares

The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the vector b and/or the matrix A such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to b, while in data least squares (DLS) it is restricted to A. In scaled total least squares (Scaled TLS) [15], corrections to both b and A are allowed, ...

متن کامل

Least – Squares Method For Estimating Diffusion Coefficient

 Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...

متن کامل

LEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT

Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.

متن کامل

Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidence

This paper compares ordinary least squares (OLS), weighted least squares (WLS), and adaptive least squares (ALS) by means of a Monte Carlo study and an application to two empirical data sets. Overall, ALS emerges as the winner: It achieves most or even all of the efficiency gains of WLS over OLS when WLS outperforms OLS, but it only has very limited downside risk compared to OLS when OLS outper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Research of the National Institute of Standards and Technology

سال: 2004

ISSN: 1044-677X

DOI: 10.6028/jres.109.008